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How normal flow constrains
relative depth for an active
observer

Liuging Huang and Yiannis Aloimonos

We present a set of constraints that relate the relative depth of
(stationary or moving) objects in the field of view with the
spatiotemporal derivatives of the time varying image intensity
tunction. The constraints are purposive in the sense that wney
can be used only for the relative depth from motion problem
and not in other problems related to motion (i.e. they lack
generahity). In addition. they show that relative depth could be
obtained without having to go through the intermediate step
of tullly recovering 3D motion. as is commonly considered.
Our analysis indicates that exact computation of retinal
motion (optic flow or displacements) does not appear to be a
necessary first step for some problems reiated to visual
motion. contrary to conventional wisdom. In addition. it is
demonstrated that optic flow. whose computation is an ill-
posed problem, is related to the motion of the scene only
under very restrictive assumptions. This paper is devoted to
the discovery of the mathematical constraints relating normal
flow and relative depth. The development of algorithms using
these constraints and the study of stability issues of such
algorithms, is not discussed here.

Keywords: computer vision, constraints, field of view

The problem of structure from motion has attracted a
lot of attention in the past few years' ' because of the
general usefulness that a potential solution to this
problem would have. Important navigational problems
such as detection of independently moving objects by a
moving observer, passive navigation, obstacle detection,
target pursuit and many other problems related to
robotics, teleconferencing, etc. would be simple applica-
tions of a structure from motion module. The problem

Computer Vision Laboratory, Center for Automation Research,
University of Maryland, College Park, MD 20742-3275, USA
Paper received: 8 March 1993 revised paper received: 9 February 1994

has been formulated as follows: Given a sequence of
images taken by a monocular observer (the observer
and/or parts of the scene could be moving), to recover
the shapes (and relative depths) of the objects in the
scene, as well as the (relative) 3D motions of indepen-
dently moving bodies.

The problem has been formulated and usually treated
as an aspect of the general task of recovering 3D
information from motion'*™'*. The majority of the
proposed solutions to date are based on the following
modular approach:

1. First, one computes the optic flow on the image
plane, i.e. the velocity with which every image point
appears to be moving. (For clarity, we consider only
the differential case. In the case of long range
motion one computes discrete displacements, but
the analysis remains essentially the same.)

2. Then segmentation of the flow ficld is performed

and different moving objects are identified on the

image plane. From the segmented optic flow one
then computes the 3D motion with which each
visible surface is moving relative to the observer.

(Assuming that an object moves rigidly, a mono-

cular observer can only compute its direction of

translation and its rotation, but not its speed).

Finally, using the values of the optic flow, along

with the results of the previous step, one computes

the surface normal at each point, or equivalently,

the ratio Z;/Z; of the depths of any two points i

and J.

w

The reason that most approaches have followed the
above three-step approach is two-fold. The first is due
to the formulation of the problem, which insists on
recovering a complete relative depth map and accurate
three-dimensional motion. The second is due to the fact
that the constraints relating retinal motion to three-

0262-8856/94/07/0435-11 «(* 1994 Butterworth-Heinemann Ltd
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How normai flow constrains relative depth: L Huang ar.d Y Aloimonos . . .

dimensional structure involve 3D motion in a nonlinear
manner that does not allow separability. For examples
of such approaches, see elsewhere' *'7"'°_ However, the
past work in this paradigm, despite its mathematical
elegance, is far from being useful in real-time naviga-
tional systems, and such technigues have found few or
no practical applications (possible exceptions are photo-
grammetry and semiautonomous applications requiring
a human operator). Consequently, this approach cannot
be used to explain the ability of biological organisms to
handle visual motion.

There exist many reasons for the limitations of the
optic flow approach, related to all three steps listed
above. To hegin, the computation of optic flow is an ill-
posed problem, i1.e. unless we impose additional
constraints, we cannot estimate it*. Such constraints,
however, impose a relationship on the values of the flow
field which is translated into an assumption about the
scene in view (for example, smooth). Thus, even if we
are capable of obtaining an algorithm that computes
optic flow in a robust manner, the algorithm will work
only for a restricted set of scenes. The only available
constraint at every point (x,y) of the changing image
I(x,y,1) for the flow (u,v) is the constraint
Lu+ Iv+ I, = 0%, where the subscripts denote partial
differentiation. This means that we can only compute
the projection of the flow on the gradient direction
(I, 1) - (u,v) = —~1,), ie. the so-called normal flow.
More graphically, it means that if a feature (for
example, an edge segment) in the image moves to a
new position, we don’t know where every point of the
segment moved to (see Figure 1); we only know the
normal flow, i.e. the projection of the flow on the image
gradient at that point.

A second reason has to do with the very essence of
optic flow. An optic flow field is the vector field of
apparent velocities that are associated with the variation
of brightness on the image plane. Clearly, the scene is
not involved in this definition. One would hope that
optic flow is equivalent to the so-called motion field'®,
which is the (perspective) projection on the image plane
of the three-dimensional velocity field associated with
each point of the visible surfaces in the scene. However,
the optic flow field and the motion field are not equal in
general. Verri and Poggio®® reported some general

Figwre 1 The aperture problem. Point A could have moved to B, C,
D, E. However, whatever the value of the image motion vector is, its
projection on the normal 10 a is always AD (known)

results in an attempt to quantify the difference between
the optic flow and motion fields. Although we don’t yet
have necessary and sufficient conditions for the equality
of the two fields, it is clear that they are equal only
under specific sets of restrictive conditions.

A third reason is related to the second step of the
existing algorithms for structure from motion. These
algorithms attempt to first recover three-dimensional
motion before they proceed to recover relative depth.
and this problem of 3D motion appears to be very
sensitive in the presence of small amounts of noise in the
input (flow or displacements\hbox{)}'71%3%%4.

Is it possible to compute relative depth from motion
without using optic flow fields (which are difficult 1o
compute and in general not equal to the motion fields),
and without having to go through the intermediate
stage of 3D motion recovery? If it is, then we have the
potential for a more robust algorithm. This is the
question we study in this paper. It turns out that it is
indeed possible to compute relative depth if we use the
spatiotemporal derivatives of the image intensity
function and we employ an active observer.

INPUT

Qur motivation is by now clear. We wish to avoid using
optic flow as the input to the computation of structure
from motion. On the other hand, we must utilize some
description of the image motion. As such a description
we choose the spatial and temporal derivatives
or or ol
ax’ gy’ or
These quantities define the normal flow at every point,
i.e. the projection of the optic flow on the direction of
the gradient (1., /,). Clearly, estimating the normal flow
is much easier than estimating the actual optic flow. But
how is normal flow related to the three-dimensional
motion field? Is the normal optic flow field equal to the
normal raotion field, and under what conditions? This
question was addressed by Verri and Poggio®.

Let I(x,y.r) denote the image intensity, and consider
the optic flow field ¥= (u,v) and the motion field
¥ = (&, ¥) at a point (¥, ) where the local (normalized)

of the image intensity function I(x..1).

intensity gradient is # = (/,,1,)/,/I3 + I}. The normal
motion field at point (x, y) is by definition:

p=V-n or

_ (. 1)) (dx d}')
Uy = e | ——, — or
/lf:.+1% dt’ dt
u ——-——VI (ﬂf fi—}— or
"SI \dr

1 dx
w=rom (4G +04)

Similarly. the normal-optic flow?1 is.

1
Uy = — =

viI L
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Thus:

L
T Vlde

Uy — Uy

From this equation it follows that if the change of
. . ) dl\ .
intensity of an image patch during its motion (‘d_ﬁ is

small enough (which is a reasonable assumption) and
the local intensity gradient has a high magnitude, then
the normal optic 1low and motion fields are approxi-
mately equal. Thus, provided that we measure normal
flow in regions of high local intensity gradients, the
normal flow measurements can safely be used for
inferring 3D structure.

PREVIOUS WORK AND PURPOSIVE VISION

The idea of using the spatiotemporal derivatives of the
image intensity function for the solution of the structure
trom motion problem is not new. (Working with normal
flow or the derivatives of the image is exactly the same
thing. The difference is that the use of normal flow
provides geometric intuition.) In Aloimonos and
Brown® the case of rotational motion was examined.
In Horn and Weldon™ and Negahdaripour™’ the case of
translational motion was exzinined in detail. Elsewhere,
the general case was examined for recovering only 3D
motion>>~**, using pattern matching.

In this paper, we take a purposive approach®. We
would like to compute relative depth from motion
without having to go through the estimation of 3D
motion and without having to compute optic flow. In
simple words. we want a procedure that computes
relative depth and is designed only for this problem. Of
coursc, if information about 3D motion is known, it can
be effectively utilized in our problem, but this is of no
concern to us here. When building a system that can
deal with visual motion problems, we can visualize it as
consisting of many processes working in a cooperative
manner to solve various problems. For example, the
theory described in this paper could be used to design a
process that computes relative depth from image
measurements, independently of the process that
computes 3D motion. However, after a number of
computational steps, when results about relative depth
and 3D motion become available from the two inde-
pendent processes, they can be exchanged and the
constraints relating to them can be effectively utilized
so that the results are as consistent as possible. Such an
approach to building vision systems is less modular than
the general recovery approach'®,

This approach of attempting genera! solutions to
specific problems (purposive vision), as opposed to
working towards solutions to general problems
{reconstructioiist vision), is justified bv the potential
robustness of the proposed solutions, and is very much
needed for the development of successful systems in the
real world. Of course, normal flow contains much less

information than optical flow, and we cannot expect
that we will be able to fully recover the relative depth
map. Indeed, we show that tor the case of moving
objects, relative depth cannot be obtained everywhere
(i.e. at every pixel), but only at points where the local
intensity gradient is parallel to a given direction. But a
full depth map is not always required. We only need the
values of the depth that are relevant to the task at hand.

PAPER ORGANIZATION

We define the relative depth from motion problem as
follows: ‘Given an active observer that can collect a
series of images of a scene, to recover the relative depths
of objects (or features) in the scene.” (An active
observer’ controls the geometric parameters of its
sensory apparatus, thus introducing constraints on its
sensory data.)

Since the input to the perceptual process is the normal
flow, and the normal flow field contains, in general, less
information than the motion field, to solve the problem
we need to transfer much of the computation to the
activity of the observer™®. A geometric model of the
observer is given in Figure 2. Notice that the camera is
resiing on a platform (‘neck’) with six degrees of
freedom (actually only one of the degrees is used), and
the camera can rotatc around its x and ) axes
(saccades). (However, in this work the only activity
required is acceleration along the optical axis.)

The organization of the paper reflects the increasing
difficulty of the problem as the motion of the object in
view becomes more complex. The following section is
devoted to the case of stationary objects. It is shown
that if the observer moves along its optical axis, relative
depth is easily obtained from the normal flow. Then we
study the problem for the case of an object translating
parallel to the image plane, deal with the case where the
object is moving with a general translation, and analyse
the general case. We assume that independently moving
objects can be detected and localized on the image. This

camera—>

J J
= coordinate system

—+ = directions of translation
0 = directions of rotation

Figure 2 The active observer

Image and Vision Computing Volume 12 Number 7 September 1994 437
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P(X, Y, Z)

——

X| pix, y)

4z

Figure 3 The camera moves towards the objects in a scene with
velocity I,

problem, which is nontrivial if the observer is moving, is
- X
addressed elsewhere™ *,

STATIONARY OBJECTS

Let the camera move towards the scene with velocity V/,
along its optical axis. Let the image point p(x, y) be the
projection of 3D point P(X,Y.Z). After time dr,
P(X,Y,Z — V.dt), which is the new position of P,
projects to p'(x’,y'). Using the relations of perspective
projection assuming unit focal length, we have (Figure 3):

X =§ )]
r= %’ )
X = Z——XTI; 3
Y = 2_—};,(—_‘; )

Thus we can obtain the motion velocity of image
point p(x, y) as:

. X -x V¥, V.
K A ©)
Similarly, we have:
'y V., V.
v lim 2 & = Zry e (6)

Tdr—0 dt Z VA

Suppose the unit normal vector (i.e. the direction of
the image gradient) p(x, y) is (n,, n,). The normal vector
is the projection of the motion field on the unit normal
vector. Thus we have the following relationship between
the motion velocity and the normal flow:

or:

Ve vy
= — == ——— 8
0 Z xn,+yn, (8)
As the camera is the only moving object in the scene,
and all the objects are stationary. ¥ is the same for all
image points. Thus we can use equation (8) to decide
which object or feature is closer.

OBJECT TRANSLATING PARALLEL TO THE
FOCAL PLANE

Here we study the case where the object is translating
parallel to the focal plane with velocity ¥/, ¥, along the
x and v axes respectively, while the camera is moving
towards the object with velocity V. along the - axis. The
velocity of the object with respect to the camera is
(V. V.. = V). Assume that point P(X. Y. Z) projects to
plx.y) at time ¢ and after time dr the same point
PX+Vdt,Y+ Vidi,Z - V.d) projects to p(x'. 1)
then we have (see Figure 4):

.v:% 9)
‘:iz(t—i?‘% an
‘=§t—yy‘7’: (12)

Thus we can obtain the motion velocity of image point
plx,v) as:
vV—x Y, V.

B T Sl S A 3
N =7tz (13

Similarly, we have:
I S V.

A b e e A 4
v (11’1210 T = +1 > (14

According to equation (7) we have:

s
¢

z

Vo[ Ve ¥,
(xn, + yn,) - Z (nv\. 7‘ + n, ,—/‘ 15)

Yy = :
(4

X{ p(x, ) )P(Xv Y, Z)

v

=

Vp = Velly + vy (7)
o Z
or: 7y
Y
Ve V. /
Vp = }—xnx + Eyﬂy
V.
Ve -
=—{(xn
Z (s + Yy ) Figure 4 The object is moving parallel to the focal plane
438 Image and Vision Computing Volume 12 Number 7 September 1994




While we cannot immediately recover (V./ V., V./V,)
from the images, the vector is parallel to the direction of
motion of the object on the x)y-plane (V,, V,). In the
Appendix we show how to estimate the direction of
V., V,) (ie. V\/V,) in the general case. Note that in
natural scenes of objects, normal flows are available in
all directions. If we select a normal vector from the
image of the object that is perpendicular to the direction
of motion, the second term of equation (15) will be zero.
Thus for objects moving parallel to the focal plane, we
obtain the direction of motion (V,, V,) (see Appendix).
Then, for normal flows that are perpendicular to the
direction of motion, we have:

Ve Vy
== 16
Q Z  xng+yn, (16)

It is noteworthy that partial 3D motion information
(V,/V,) is utilized in this case.

OBJECT WITH GENERAL TRANSLATION

When an object is translating with velocity (V., V.. V.)
with respect to the camera while the camera is
translating along the - axis with velocity V.., the
motion of the object with respect to the coordinate
system centred at the camera is (V, V., V. — V.) (Figure
5). According to equation (16), if we select normal flows
perpendicular to the direction of motion, we have:

l,(' - ’/': — v"

Z xn. +yn,

(17)

This measurement is not useful yet because we have an
object-specific velocity V..

To eliminate the unknown V., the translational
velocity of the moving object along the = axis, we will
use two consecutive frames, at times 7, and 1. Assume
that the scene consists of a stationary and a moving
object; that the stationary object at time r, is at
P(X\.Yn.Z,)), and at time > is at P(X,, Y2, Z42);
and that the moving object at time 1, is at
P(X51. Y11, Z21). and at time 1, is at P(X2, V22, Z2)). We
also assume that the velocity of the camera at time 1, is
V. and at time ¢, is ¢V, where ¢ # 1 is a constant. If the
camera is accelerating much faster than the object, we
can assume that the velocity of the object remains the
same across the frames. We select a normal flow v, that

X| p(xy)

[¢]
’v,
v V
V.

Figure 5 Moving robot hand approaching a stationary object

How normal flow constrains relative depth: L Huang and Y Aloimonos

is perpendicular to the direction of the 3D motion in the
xy plane.
From equation (16) we have:

V.
—< =p 18
Zo o™ (18)
eV,
— = hin 19
Zy . i
V.- V.
! — = P 2
Zy b (20)
cVe-V.
“7m b @n
and:
Ly =2y~ Ve (22)
Zyn =2y = (V. ~ Vo)dt (23)

From the above equations. when dr is small, we obtain:

Ve by =bi+biubpdt by — b

Fin T—c budt febndi . 1—¢ (24)
and:

et B S
or:

AHZp Ve l-0) = —V'-%Ij—(—) = by —bp» (26)
and: ~

QZn,V,1-0)= ﬁ%l =bxn — bn (4))
where for i,j=1,2:

by = —— (28)

Xiilyij + Ry

Thus we have obtained the relative depth function Q
for a moving object and a stationary object. Velocity V,
and velocity ratio ¢ are not known, but since they are
parameters of the camera, they remain the same for all
objects involved. We assume that it is known whether
the camera is moving forward or backward; thus we
know the sign of V.. We also assume that it is known
whether the camera is accelerating or decelerating; thus
we know the sign of 1 — ¢. Therefore, we can determine
the relative depth of the two objects from equation (28).
(It is worth noting that the same results can be achieved
if the camera is at first stationary and then moves
quickly to a new position instead of moving and then
accelerating. In this case, V. —0, ¢—o00 and
c-V.— V.. Thus the relative measures become

Vv
Q(Z, V’() == —2‘;)'

Image and Vision Computing Volume 12 Number 7 September 1994 439
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OBJECT MOYVING IN AN UNRESTRICTED
RIGID MANNER

The motion of a rigid object can be described as the sum
of a rotatior plus a translation. We can choose a point
through which the rotation: axis passes; this gives a
unique rotation and translation describing the rigid
motion (in general, there are infinitely many combina-
tions of rotations and translations describing the same
rigid motion). Assume that the object is translating with
velocity T=(T,,T,, T.)" and rotating with angular
velocity R=(R.R.R) around a point
P = (Xy, Yo, Zo) on its surface (Figure 6). The transla-
tional components are measured with respect to the
world coordinate system, while the angular velocity is
measured with respect to the coordinate system whose
origin is located at point (Xy, Yo, Z,)”. The camera is
moving with velocity T, along the - axis.

Point P is visible in the image; its image is point
p = (x0,y9). We attach a coordinate system to the
object, at point P, with axes parallel to the axes of the
observer coordinate system. We express the motion of
the object in this object-based coordinate system. The
camera is moving with velocity T, along the Z-axis.
Then the velocity of any point Q on the object is:

T, X-X
V= T, +Rx | ¥Y-T,
T:_Tr Z_ZO

Tv + R\(Z - ZO) - R:(Y‘ Y())
T_r + R:(X - XO) - R\(Z - ZO)
L7 T+ R(Y = Yo) — R(X — Xp)

Thus, expressing the optic flow (v,. v,) on the image, we
have:

NI >

i

t
=
SINS

1

!
.

i

NN R
+
=

Z
~ x(y — yo)R\ + (
R_v - (}’ - yO)R:

Z-Zy

X

+ x(x — xo))

and:

NI~

<
-
If

~T.
Z

Z-2Z
-( 7 0-+y(y—yo))Rx+y(x~xo)

R, + (x — xo)R;

NINN|S &I
|
=
SN

+
h

where (xp,y0) is the projection of (Xo, Yo, Zo) .
Combining the above equations with equation (7), we
obtain for the normal flow:

Figure 6 Object moving in an unrestricted rigid manner

y T( - T: T\ + r\
= T\ Wy v E
z \"T-7.""T_T.

T. - T

+

(nx +ny)

— Ro(y = vo)xn, + yn)
+ Ri(x — xolxn, + yn,)
+ RA(x — xodn, = (v — yo),)

Z -7
+ 0

(Rt”\ - R\"lr)

Considering this measurement u, at point x = xy.

v =1 (and Z = Z,) we have:
T.-T. T, . T,
n = H, n,
" Z T.-7. "T T
T.-T
VA

Provided that the direction (n,, #,) of the normal flow at
(xo.¥p) is perpendicular to the direction of parallel
translation (7, T,), we get:

T(' - T: _ Uy

Z  xon, +yon,

+

(xn, + yn,)

Then, assuming two frames as before. we obtain:

V.l -o¢)

UZn V. 1-C)= 7

= b2y = b
Unij

where for i,j=1,2.p; = —————
Xl + Vil

We thus see that we can compute at least the quantity
Vil — . .
—A—Z_i)' where Z is the depth at a point p = (x.y) and

where the direction of the normal flow (n,.n,) is
perpendicular to the direction (7,.7,) of parallel
translation, when the motion of the object is measured
with regard to a coordinate system with origin at the
object point whose image is point p and axes parallel to
those of the camera coordinate system, Using the
technique described in the Appendix, we can find the
direction of parallel motion (T, T,) for any position of
the object coordinate system and choose that position
for which the direction of the normal flow is

440 Image and Vision Computing Volume 12 Number 7 September 1994






Figure 10 Normal flow of a4 moving robot arm with a stationary
cameri

Figure 11 Image taken after both the robot arm and the camera have
moved to new positions

(Z/ V(1 — ¢)) was 10.230856 for the arm and 10.145772
for the toy, which agrees again with the ground truth.
These experiments demonstrate that the constraints
introduced have the potential of giving rise to algo-
rithms that can be used for the robust estimation of
relative depth. Naturally, several stability issues need to

Figure 12 Normal flow of o moving robot arm and & moving camera

be examined. 1t is well known that particular motions of
a visual sensor arc quite pathological regarding the
recovery of structure. while others are more stable. Such
geometric facts need to be taken into account when we
design active vision techniques and provide the sensor
with an activity. In this particular case. the forward
motion of the sensor might not be optimal. in the sense
that it might not minimize errors in the estimation of
relative depth.

SUMMARY AND CONCLUSIONS

We have presented a set of constraints relating relaiive
depth and normal flow, i.e. the projection of the optic
flow on the direction of the local intensity gradient,
which we showed to be equal to the normal motion field
in areas where the magnitude of the intensity gradient is
large. The heart of the constraints lies in factoring out
the effects of the parallel translation on the normal
flow, by making measurements only at places where the
normal flow is perpendicular to the parallel translation.
Clearly, if nature conspired against this computational
theory, it could present it with stimuli having only one
or a few orientations, thus making it impossible to find
normal flows perpendicular to the direction of parallel
translation. However, for most objects in natural
environments one can find gradients in almost any
direction, and we should note that most moving objects
have outlines which provide a (usually large) number of
gradient directions. It is important to realize, however,
that the procedures described here will never output an
incorrect result. However, they may not be able to

442 Image and Vision Computing Volume 12 Number 7 September 1994
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produce a result at all. in which case some other process
should be used.

For the case of general translation we showed that
relative depth can be computed at all points where the
tensity gradient is perpendicular to the direction of the
parallel translation. For the case of general motion we
considered a coordinate system attached to any visible
object point. The consequence of this is that at the
image of that point the effect of the rotation on the
normal flow is zero. and the solution procecds as before,
through the employment of a specific activity
(acceleration along the optical axis). Clearly, many
such points could be found.

APPENDIX

Here we describe a technique for finding the direction of
parallel translation (3., },) from image measurements.
We treat the problem in the general case (translation
plus rotation). This appendix is a short summary ot a
technique described elsewhere™. In addition. we assume
that the observer is “looking at the moving object. i.c.
the object lies on the observer's optical axis. If this is not
the case. the observer can always achieve it with a
rotation of the camera (saccade). (It is important to
realize. however. that such a saccade does not actually
have to be implemented - it can be simulated. since the
eftects of a rotation are independent of depth. It is. of
course, assumed here that the detection of the moving
object has been accomplished** .

Such a rotation introduces a known contribution to
the normal flow. So. we assume that the moving object
lies on the optical axis (Figure 41). To describe the
motion of the object, we consider a coordinate system
attached to it at its point of intersection with the optical
axis. As a result, near the image origin the effect of
rotation is negligible. Thus. considering a small area
around the origin. we expect to find normal flows due to
t-anslation only. If we consider for simplicity a closed
contour in that area (in an actual implementation cne
would have to consider all points inside the contour).
then there are two possibilities for the pattern of normal
flow (assuming that the object is moving closer). ( If the

k4

Figure A1 In actuality. not all lines will pass through the same point.
In such a case. angle AOB gives all possible directions. Stability can be
achieved if the analysis is done in the dual spacc, where each line
corresponds to a point and a pencil of lines corresponds to a set of
collinear points

Figure A2

object is moving away. the situation is symmetric.) It
will be either as in Figure A2 or otherwise (as, for
example. in Figures A3 and A4). If the pattern is as
Voovyy oo
IR lies inside the
contour and thus it is very small (negligible). Indeed. the
FOE lies on the other side of the normal flow (Figure
A5)Y,

We need the direction of the vector (V.. 1,). In fact.
in our cquations we only had vectors of the form
oo _ o .
(T'—' T—') which have the same direction as (},. 1))
(see “igure A6). But since (T}. T‘) has very small

in Figure 42. then the FOE (

magnitude, the etfect is the same. i.e. the quantity
' V -
i,—‘n‘ + T’—‘"‘ becomes negligible.

If the bullcrn is not as in Figure A2. there exists a
dominant direction of the flow on the image plane.
Assuming that the values of the flow are equal inside the
small patch, we can compute the value of the flow from
the normal flow values (Figures A7 and A48). The
direction of the flow at the origin is equal to the
direction of parallel translation. Indeed. if (1. v) is the

.. V vV .
flow at the origin, we have u = ?‘ v o= 7‘ where Z is
the depth of the object point projecting to the origin.

v b
Thus - = —
u V,

Figure A3

Figure A4
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